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Abstract: Hexavalent chromium Cr(VI) is a highly toxic pollutant that poses a significant threat to human health and the 

environment. Electrocoagulation is a promising technology for the removal of Cr(VI) from wastewater. This work reviews and 

evaluates statistical models developed in different studies published between 2015 and 2021 on the removal of Cr(VI) using 

electrocoagulation. The analysis showed that none of the models was found to be conclusive, and that they all suffer from 

issues such as overfitting and the inability to generalize beyond the experiment domain. These models were also highly 

dependent on the selection of input parameters, model selection criteria, and experimental design. An attempt to solve this 

problem was to utilize Machine Learning (ML) techniques to develop a more robust model that can provide generalized and 

accurate predictions on a broader domain. The model was developed using Support Vector Machines Regression analysis 

(SVR). Data compiled from previously published works were used to train and test the model using a 50:50 split ratio. The 

model was able to make more generalized predictions but lacked accuracy. As with all ML models, this model requires a 

higher volume of high-quality data to improve its accuracy. The study concluded that there is still a need for more robust 

statistical models that can effectively capture the complexity of the electrocoagulation process and generalize well beyond the 

experiment domain. 

Keywords: Statistical Models, Electrocoagulation, Hexavalent Chromium, Machine Learning 

 

1. Introduction 

Today's growing population, urbanization, industry, and 

the agricultural sector are all contributing to a reduction in 

water quality and quantity. Industrial wastewater treatment 

has been viewed as a desirable method to safeguard water 

resources. Industrial effluent is produced in large quantities 

daily with a substantial amount of harmful trash. Water 

resources are important now more than ever to both human 

growth and the environment, especially with the increase of 

contaminated effluent released as a result of industrial 

development. [1] 

Chromium is one of the problematic heavy metal 

pollutants that can be present in industrial wastewater. Since 

heavy metals cannot decompose, they will persist in the 

environment and accumulate in living organisms causing 

environmental problems and diseases. Chromium is 

generated from mining, tanning, electroplating, wood 

preservatives, paints, textile dyeing, and plants producing 

industrial inorganic chemicals and pigments. [2, 3] 

Chromium exists in wastewater steams as trivalent Cr(III) 

and hexavalent Cr(VI). Cr(III) is an essential micronutrient 

as long as it exists in trace amounts. Cr(VI) is a harmful 

variant and a potentially carcinogenic compound. 

Many studies have been conducted on removing chromium 

using different treatment methods such as electrochemical 

precipitation, ion exchange, membrane processing, solvent 

extraction, coagulation, and adsorption. 
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Electrocoagulation involves many physical and chemical 

phenomena; the primary process variables, individual and 

combined effects have a complex relationship with the 

effectiveness of removing contaminants. 

The aim of this work is to investigate electrocoagulation as 

a method for chromium removal from wastewater using 

statistical modeling methods. This study will review 

published models that can predict the percent removal of 

hexavalent chromium Cr(VI) and assess the validity and 

accuracy of each model. 

2. Literature Review 

Electrocoagulation has been studied as a promising, highly 

efficient, cost-effective method for the removal of chromium 

from industrial waste waters. 

Electrocoagulation involves many physical and chemical 

phenomena; the primary process variables, individual and 

combined effects have a complex relationship with the 

effectiveness of removing contaminants. 

Experimental works aiming to study the effects of process 

variables on the efficiency of electrocoagulation. This is done 

by changing a single factor while keeping all other factors 

fixed at a certain set of conditions in the majority of EC 

research on water/wastewater treatment. A statistical 

regression is done to model the experimental results and use 

it to make predictions. This approach to EC process 

modelling necessitates numerous experimental runs and the 

selection of a suitable domain and variable ranges. Narrow 

experimental domain, or too few runs may result in a poorly 

performing model. [4] 

K. Thirugnanasambandham and K. Shine investigated the 

influence of electrocoagulation parameters using Box-

Behnken experimental design. RSM and Artificial Neural 

Networks (ANN) statistical methods were used for analysis 

and prediction. The study examined the effects of pH, current 

density, electrode distance, and electrolysis time on the EC 

process. The results show that RSM and ANN can both 

accurately characterize the current electrocoagulation process. 

Using stainless steel electrodes, initial pH of 6, current 

density of 25 mA/cm
2
, electrode distance of 4 cm, and 

electrolysis period of 30 min were found to be the ideal 

working parameters achieving 97% chromium removal with 

a 0.12 kWh/m
3
 electrical energy expenditure. [1] 

Statistical optimization study done by Sunil R. Patel and 

Sachin P. Parikh using response surface methodology (RSM). 

The Experimental setup consists of a glass beaker and two 

copper plates (15 cm × 4.6 cm × 0.1 cm) serving as the 

electrodes. The anode and cathode were connected to a DC 

power supply. A wooden block was used to maintain 

electrode distance. Artificial waste water was created by 

dissolving potassium permanganate (K2Cr2O7) in distilled 

water. Process variables studied are pH, Cr(VI) initial 

concentration, current density, Electrolyte concentration 

(NaCl), interelectrode distance, and treatment duration. This 

work also included a kinetic study to determine the rate 

constant for chromium removal under the experiment 

conditions. The experimental results demonstrated that the 

optimal operating parameters for achieving 93.33% removal 

efficiency of Cr(VI) ions from simulated waste water are 

current density of 41.32 A/m
2
, electrode distance of 1.4 cm, 

initial pH of 5.65, time of electrocoagulation of 40 min, and 

initial conductivity 0.21 µs. [5] 

A study by Rasha H. Salman and colleagues investigated 

the treatment of real tannery wastewater using 

electrocoagulation followed by Reverse Osmosis (RO). The 

study examined four operating parameters namely the current 

density, electrode distance, NaCl concentration and treatment 

duration. The Cr
3+

 removal percent at the optimum 

conditions (1.5 g/l NaCl, 25 mA/cm
2
, 2h treatment duration 

and 20mm electrode distance) was 88.8%, which does not 

meet the environmental requirements in Iraq. Following the 

EC with an RO process increased the removal percent up to 

99.89% which is well beyond the acceptable limit. [6] 

Edwar Aguilar et al have studied the removal of chromium 

from tannery wastewater using aluminum as the electrode 

material. The study investigated the effect of current density, 

treatment time and pH. The work concluded that total chrome 

removal can be achieved at a current intensity of 2.9 A, a pH 

of 8.4, for a duration of 21 min. [7] 

Nahid Genawi et al performed experimental studies on real 

wastewater from tanneries. The study focused on the effect of 

initial chromium concentration, current density and pH. The 

optimum conditions were determined using ANOVA analysis 

where maximum chromium removal was obtained at 750 

ppm Cr(IV), 13 mA/cm
2
 and a pH of 7. [8] 

Work by Umran Tezcan Un et al studied the operational 

factors on electrocoagulation using an iron electrode in a 

stirred batch reactor. The study concluded that the highest 

performance was obtained a pH of 2.4, 0.05 M NaCl 

electrolyte, and a current density of 20 mA/cm
2
 for a duration 

of 20 minutes at an energy cost of 2.68 kWh/m
3
. The initial 

Cr(VI) concentration of 1000 mg/L was almost fully reduced 

achieving the EPA guideline of 2.77 mg/L in a single step. [9] 

Ehssan Nassef and Doaa Elsayed studied the effects of pH, 

NaCl concentration, initial chromium concentration, Current 

density, and treatment time on the removal of hexavalent 

chromium, iron consumption, and energy consumption. The 

experimental results were fitted to a second-order polynomial 

using multiple regressions. The study concluded all 

parameters have a significant effect on chromium removal, 

and negligible effect on iron consumption. Energy 

consumption was only affected by current density. [10] 

The influence of the type of electrode was investigated by 

Aji Prasetyaningrum et al. The group worked on 3 types of 

electrodes, (aluminum, stainless and a combination of both). 

The study concluded that aluminum was the best performing 

electrode by achieving 26% reduction of Cr(VI) in industrial 

waste water generated from plating industry. Stainless steel 

and the combination electrode showed good results in the 

first hour of the electrocoagulation process, but their 

performance deteriorates afterwards. [11] 

Vishakha Gilhotra et al studied the treatment of high 

strength chrome bathwater. The experiments were first 
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conducted on simulated wastewater to optimize process 

parameters, namely pH, current density and treatment 

duration. 97.5% removal was obtained at the optimum 

conditions (pH of 5, 6.8 mA/cm
2
, and 17 minutes treatment 

time). It was also observed that beyond 4g/l, NaCl 

concentration had negligible effect on the chromium removal 

efficiency. When the same conditions were applied to real 

wastewater, negligible removal was obtained due to the high 

Cr(IV) concentration. Two approaches were followed to 

increase the removal efficiency of the real scenario. i) 

Dilution of chromium bathwater, ii) chemical precipitation 

before EC. The treatment time needed for the real scenario 

was much higher than that in the simulated experiment. [12] 

Electrocoagulation is a very complex phenomenon. There has 

been a lot of work done in recent years aiming to establish a 

statistical model to predict the outcome of the electrocoagulation 

process given a set of inputs. Most models were developed 

considering 3 factors at 3 levels. pH, current density, and 

duration are the most studied parameters throughout the 

literature. It is very difficult to do cross comparison between the 

different models since the factors and levels are not the same 

among the different studies, and the variation in other 

parameters that are not considered part of the model (for 

example, electrode distancing, initial concentration). 

The experimental setup of previous works as well as the 

studied parameters are summarized in Tables 1 and 2. 

Table 1. Summary of Experimental Setups. 

No. 
Anode 

Material 

Cathode 

Material 
Reactor Dimensions Configuration 

Electrode 

Surface Area 

Electrode 

Spacing 
Reference 

1 (A) Stainless Steel Stainless Steel 1.5 L volume 2 Electrodes Not mentioned 
Variable 

1-5 cm 
[1] 

2 Aluminum Stainless Steel 17 x 12 x 14 cm3 
2 Electrodes (Mesh 

Cathode) 
96 cm2 

Variable 

1-2 cm 
[6] 

3 Copper Copper Not mentioned 2 Electrodes 72.6 cm2 1.4 cm [5] 

4 Aluminum Aluminum 20 x 15 x 25 cm3 4 Electrodes 100 cm2 2 cm [7] 

5 Iron Iron 
Cylindrical (ID = 15 cm; H 

= 20 cm) 
2 Electrodes 60 cm2 4 cm [8] 

7 (B) Iron Iron 2 L volume 4 rods with a7 hex nuts 1427 cm2 0.87 cm [10] 

6 (C) Stainless Steel Stainless Steel Not mentioned 2 Electrodes Not mentioned 1.5 cm [12] 

Table 2. Summary of Studied Parameters. 

No. pH Current Density Electrode Distance NaCl Concentration Initial Chromium Concentration Time Reference 

1 (A) × × ×   × [1] 

2  × × ×  × [6] 

3 × ×   × × [5] 

4 × ×    × [7] 

5 × ×   ×  [8] 

6 (B) × ×  × × × [10] 

7 (C) × ×    × [12] 

 

3. Methods 

Predicted values from each of the models will be 

compared to observed results from the different experimental 

data. Actual vs Predicted removal percentages will be plotted 

against each dataset for better visualization of the error 

margins. The coefficient of determination R
2
 will be used to 

judge a model’s fitness. 

For Ease of reference, the models will be given code 

names A, B and C. The same coding applies to the 

experimental data that were used to develop these models. 

(Refer to Table 1 for experimental setup). 

Model Formulas were reproduced using Design Expert 13 

using quadratic regression models with 2-factor interactions 

or linear regression as reported in the corresponding studies. 

3.1. Assessment of Existing Models 

3.1.1. Model (A) 

Model (A) is a second order polynomial with 2 factor 

interaction parameters. The R
2
 value was 0.9793 against 

observed data (A). When tested on other studies, the model 

performs poorly with R
2
 values of 0.0048 and 0.3395 when 

tested against Data (B) and (C) respectively. For data (B), 

there were extreme errors in the model prediction, aside from 

the large error values, there were also invalid predictions of 

negative removal percents with the highest being -180%. For 

Data (C), the model fails to make correct predictions, all the 

predictions were greater than the observed values. It is worth 

noting that the values for current density are below the lower 

limit of model (A). This can partially explain the deviation 

between prediction and observation but there could be other 

factors as well. Figures 1, 2 and 3 show the results of Model 

(A) predictions against data (A), (B) and (C) respectively. 

When tested on other studies, the model performs poorly. 

Upon further analysis, it can be observed that Model (A) is 

not logical as it shows counter intuitive trends. For example, 

removal percentage decreases as current intensity or 

electrolysis time increases. This is seen more predominantly 

when testing Model (A) with Data (C). 

A conclusion to the above is that Model (A) was clearly 

overfitted for the initial data, as such, it fails to predict results 

when given different inputs than used in the original study. 
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Figure 1. Model (A) prediction vs Data (A) observation. 

 

Figure 2. Model (A) prediction vs Data (B) observation. 

 

Figure 3. Model (A) prediction vs Data (C) observation. 
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3.1.2. Model (B) 

Model B is a linear regression model. The results for 

Model (B) show a relatively bad fit when compared to 

observed data (B) with R
2
 = 0.8282. Model (B) performs 

even worse when tested against data (C) with R
2
 value of 

0.6513. While the model describes the trend somewhat 

correctly, the prediction values are still off by a significant 

margin. It is worth noting that the data used in developing 

model (B) studied the effect of current density from 17.5 to 

70 mA/cm
2
. For data (C) all values are below 7 mA/cm

2
. 

Since Model (B) does not consider the electrode distance; 

it is not possible to test it against Data (A). Therefore, the 

tests will only include Data (B), Data (C). Figures 4 and 6 

show the results of Model (B) predictions against data (B) 

and (C) respectively. 

 

Figure 4. Model (B) prediction vs Data (B) observation. 

 

Figure 5. Model (B) prediction vs Data (C) observation. 

3.1.3. Model (C) 

While Model (C) has a very good fit with R
2
 = 0.9952 

against data (C), it completely fails to make logical 

predictions with data (B), prediction values are illogical as it 

exceeds 100% with the lowest being 120% and the highest 

being 3100%. The poor performance of Model (C) can be 

attributed to differences in experimental setup and domain as 

explained earlier. It appears that model (C) is incapable of 

making predictions for current densities beyond its domain. 

Model (C) does not consider the electrode distance; it is 

not possible to test it against Data (A). Therefore, the tests 

will only include Data (B) and Data (C). Figures 6 and 7 

show the results of Model (C) predictions against data (C) 
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and (B) respectively. 

 

Figure 6. Model (C) prediction vs Data (C) observation. 

 

Figure 7. Model (C) prediction vs Data (B) observation. 

The results of cross validation of the 3 models (A, B and C) 

indicate that these models are localized, and fail to make 

predictions outside the experimental domain, and hence 

cannot be used for real world applications. Only model E 

shows better results compared to the rest of the data, 

although its accuracy can be significantly improved if the 

model had a larger training set. The R
2
 values for the 

previous plots are summarized in the Table 3 below: 

Table 3. Comparison of R2 values for Models (A), (B) and (C). 

 Model (A) Model (B) Model (C) 

Data (A) 0.9793 NA NA 

Data (B) 0.0048 0.8282 0.1252 

Data (C) 0.3395 0.6513 0.9952 

3.2. Development of the SVR Model - Model (D) 

The new model presented in this study, Model (D) utilizes 

Machine Learning techniques, namely Support Vector 

Regression (SVR) analysis. The model was developed using 

python version 3.9.6 and the sci-kit learn (sklearn) library 

version 1.1.3. 

SVR is a supervised learning technique, where the 

machine learns the regression function that maps the input 

variables to the output observed response value while 

minimizing the prediction error. The regression function is 

defined by a subset of support vectors that are crucial in 

determining the optimal hyperplane (or epsilon-insensitive 

tube) to fit the regression line. [13, 14] 
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One advantage of using an ML approach to modelling is 

that it aims to maximize the predictive accuracy even when 

the relationship between the inputs and outputs is unknown 

or of very complex nature, since an ML model does not need 

to assume a simple functional form. Which makes it very 

effective in modelling complex phenomena and engineering 

applications. [15] 

SVR models are known to outperform linear, polynomial 

or logistical models in terms of consistency  

The dataset used in developing the model was compiled 

from the previous experimental works that were used to 

develop models (A), (B) and (C). 

The compiled dataset was split into a training set and a test 

set using a 50-50 split ratio. This allocates an equal number 

of data points to each set. 

The training set was used to build the SVR model by 

mapping the input variables to the corresponding target 

variable. The test set was used to assess the performance and 

generalization ability of the SVR model. By predicting the 

target variable for the test data and comparing them to the 

actual values, the accuracy and predictive power of the model 

could be evaluated. This evaluation provides insights into 

how well the model performs on unseen data. 

Model (D) considers the following parameters: 

1. pH 

2. Current Density 

3. Electrode Distance 

4. Duration 

Parameters not considered in the model: 

1. Initial chromium concentration 

2. NaCl concentration 

3. Electrode type 

4. Results and Discussion 

The SVR model, model (D), shows a much better 

generalization ability compared to previous models with R
2
 

equals to 0.7447 against the test data. It still can’t provide 

good accuracy with some data points, but it can describe the 

trend much better than the other models. The lack of 

accuracy can be attributed to the size of the dataset which 

included only 116 points, for ML models in general, more 

data are required for developing high fidelity models. 

The compiled dataset is shown in the Table 4 below: 

Table 4. Compiled dataset used for training and testing the SVR model. 

No. pH Current Density (mA/cm2) Electrode Distance (mm) Time (Minute) Removal Data Source 

1 8 40 30 30 55.70% 

Data (A) [1] 

2 2 40 30 30 48.90% 

3 5 40 30 10 76.60% 

4 2 25 50 30 55.60% 

5 5 25 30 30 99.70% 

6 5 40 30 50 60.60% 

7 5 25 30 30 99.70% 

8 5 25 10 50 70.40% 

9 5 10 50 30 88.70% 

10 2 10 30 30 30.60% 

11 5 40 10 30 98.70% 

12 5 10 30 50 65.70% 

13 5 40 50 30 46.00% 

14 5 25 30 30 99.70% 

15 8 10 30 30 65.60% 

16 5 25 50 50 69.70% 

17 8 25 30 50 61.70% 

18 8 25 10 30 76.60% 

19 8 25 50 30 39.00% 

20 5 10 10 30 44.90% 

21 5 25 10 10 85.00% 

22 5 25 30 30 99.70% 

23 2 25 10 30 39.00% 

24 5 10 30 10 71.60% 

25 8 25 30 10 70.10% 

26 5 25 50 10 89.30% 

27 2 25 30 10 68.60% 

28 2 25 30 50 36.00% 

29 5 25 30 30 99.70% 

30 4.66 17.5088 8.7 0 0.00% 

Data (B) [10] 

31 4.66 17.5088 8.7 2.0142 6.10% 

32 4.66 17.5088 8.7 3.91 10.80% 

33 4.66 17.5088 8.7 5.9242 13.50% 

34 4.66 17.5088 8.7 10.0711 18.80% 

35 4.66 17.5088 8.7 14.0403 24.00% 

36 4.66 17.5088 8.7 42.0616 45.60% 

37 4.66 28.0141 8.7 2.07346 15.00% 

38 4.66 28.0141 8.7 4.02844 15.20% 
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No. pH Current Density (mA/cm2) Electrode Distance (mm) Time (Minute) Removal Data Source 

39 4.66 28.0141 8.7 5.98341 17.40% 

40 4.66 28.0141 8.7 9.95261 20.90% 

41 4.66 28.0141 8.7 14.0995 34.00% 

42 4.66 28.0141 8.7 42.0024 65.50% 

43 4.66 38.5193 8.7 2.07346 11.70% 

44 4.66 38.5193 8.7 4.08768 13.90% 

45 4.66 38.5193 8.7 6.04265 17.50% 

46 4.66 38.5193 8.7 9.95261 26.00% 

47 4.66 38.5193 8.7 14.0403 37.50% 

48 4.66 38.5193 8.7 42.1209 76.00% 

49 4.66 49.0246 8.7 1.95498 6.20% 

50 4.66 49.0246 8.7 3.90995 10.20% 

51 4.66 49.0246 8.7 5.98341 14.20% 

52 4.66 49.0246 8.7 9.89336 25.50% 

53 4.66 49.0246 8.7 13.9218 38.00% 

54 4.66 49.0246 8.7 42.0024 83.50% 

55 4.66 59.5299 8.7 2.07346 8.00% 

56 4.66 59.5299 8.7 3.90995 15.90% 

57 4.66 59.5299 8.7 5.98341 21.70% 

58 4.66 59.5299 8.7 9.89336 35.40% 

59 4.66 59.5299 8.7 13.981 46.50% 

60 4.66 59.5299 8.7 42.0024 99.30% 

61 4.66 70.0352 8.7 2.1327 16.50% 

62 4.66 70.0352 8.7 3.96919 23.90% 

63 4.66 70.0352 8.7 6.1019 27.90% 

64 4.66 70.0352 8.7 9.95261 46.70% 

65 4.66 70.0352 8.7 14.0403 51.70% 

66 4.66 70.0352 8.7 42 99.30% 

67 11.8 70.0352 8.7 1.99766 10.10% 

68 11.8 70.0352 8.7 3.9778 15.30% 

69 11.8 70.0352 8.7 5.99299 21.20% 

70 11.8 70.0352 8.7 10.0234 33.40% 

71 11.8 70.0352 8.7 14.0187 40.50% 

72 10.08 70.0352 8.7 1.98014 10.50% 

73 10.08 70.0352 8.7 3.96028 17.30% 

74 10.08 70.0352 8.7 5.97547 20.60% 

75 10.08 70.0352 8.7 9.97079 36.50% 

76 10.08 70.0352 8.7 13.9661 41.00% 

77 4.665 70.0352 8.7 2.05023 16.30% 

78 4.665 70.0352 8.7 4.0479 23.90% 

79 4.665 70.0352 8.7 6.04556 27.60% 

80 4.665 70.0352 8.7 10.0409 46.40% 

81 4.665 70.0352 8.7 14.0362 51.50% 

82 3.1 70.0352 8.7 1.99766 12.70% 

83 3.1 70.0352 8.7 3.99533 26.80% 

84 3.1 70.0352 8.7 5.97547 32.90% 

85 3.1 70.0352 8.7 9.98832 52.00% 

86 3.1 70.0352 8.7 14.0362 63.20% 

87 1.99 70.0352 8.7 1.98014 24.70% 

88 1.99 70.0352 8.7 3.96028 33.10% 

89 1.99 70.0352 8.7 5.97547 39.80% 

90 1.99 70.0352 8.7 9.98832 56.40% 

91 1.99 70.0352 8.7 13.9661 74.80% 

92 1 70.0352 8.7 1.98014 29.30% 

93 1 70.0352 8.7 3.9778 42.30% 

94 1 70.0352 8.7 5.99299 47.10% 

95 1 70.0352 8.7 9.98832 73.90% 

96 1 70.0352 8.7 14.0012 100.00% 

97 6.8 3.21 20 8 33.00% 

Data (C) [12] 

98 4.7 6.78 20 8 55.50% 

99 4.7 3.21 20 8 39.00% 

100 6.8 6.78 20 17 91.60% 

101 4.7 6.78 20 17 97.50% 

102 6.8 3.21 20 17 55.00% 

103 4.7 3.21 20 17 69.50% 

104 6.8 6.78 20 8 57.00% 

105 7.5 5 20 12.5 66.50% 
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No. pH Current Density (mA/cm2) Electrode Distance (mm) Time (Minute) Removal Data Source 

106 5.8 5 20 5 26.00% 

107 5.8 5 20 20 80.70% 

108 4 5 20 12.5 76.00% 

109 5.8 8 20 12.5 89.00% 

110 5.8 2 20 12.5 45.10% 

111 5.8 5 20 12.5 57.70% 

112 5.8 5 20 12.5 62.50% 

113 5.8 5 20 12.5 59.60% 

114 5.8 5 20 12.5 60.20% 

115 5.8 5 20 12.5 59.70% 

116 5.8 5 20 12.5 58.60% 

The model performance against the test set is shown in Figure 8 below: 

 

Figure 8. Model (D) prediction vs Test Data. 

5. Conclusion 

After evaluating studies published between 2015 and 2021 

on the removal of Cr(VI) using electrocoagulation, it can be 

concluded that none of the statistical models was entirely 

conclusive. All models had similar problems such as 

overfitting, localized applicability, and inability to generalize 

beyond the experimental domain. 

Model (A) was found to consider the most parameters, but 

it still falls short when evaluated against different data due to 

its localized nature. Furthermore, Models (C) and (B) both 

have significant flaws. These models produce illogical results 

and perform very poorly when tested with different data. 

Model (D) showed much better generalization 

performance, but overall, it was able to approximate data 

from all the other experiments. The accuracy of the model 

while can be further improved if given a larger dataset. 

It is recommended that future research focuses on the 

development of more robust and reliable statistical models 

that can capture the complexity of the electrocoagulation 

process and generalization beyond the experimental domain. 

To achieve this, researchers should reconsider the model type 

as quadratic regression might not be the best mode, even if it 

produces high R
2
 value as this can be a result of overfitting 

and not necessarily an indication of a good model. 

Additionally, a more comprehensive experimental design that 

considers a broad range of variables should be utilized to 

increase the validity and reliability of statistical models and 

avail more data for training ML models. 

This review highlights the need for further investigation 

and development of accurate and reliable statistical models 

for the removal of Cr(VI) using electrocoagulation. Careful 

consideration should be given to the applicability of such 

models in different scenarios to avoid over-reliance and 

misinterpretation of results. 
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